
www.manaraa.com

Parallel Algorithm Fundamentalsand AnalysisCSC 93-17Bruce McMillin ?1, Hanan Lut�yya ??2, Grace Tsai1, Jun-Lin Liu11 Department of Computer ScienceUniversity of Missouri-RollaRolla, MO 65401 USA2 Department of Computer ScienceUniversity of Western OntarioLondon, Ontario N6A 5B7 CanadaAbstract. This session explores, through the use of formal methods, the \intuition" used in cre-ating a parallel algorithm design and realizing this design on distributed memory hardware. Thealgorithm class NC and the LSTM machine are used to show why some algorithms realize theirpromise of speedup better than others and the algorithm class NP is used to show why other algo-rithms will never be good for parallelization. The realities of algorithm design are presented throughpartitioning and mapping issues and models. Finally, correctness through cooperative axiomaticreasoning provides an additional basis for understanding parallel algorithm design and speci�-cation and is used for run-time assurance of distributed computing systems through operationalevaluation.Key Words: Algorithm Design, Embeddings, Speedup, Class NC, Reasoning, Operational EvaluationThis paper appears, in its entirety, in the Proceedings of the International Summer Institute onParallel Computer Architectures, Languages, and Algorithms, July 5-10, 1993, Prague, Czech Republic,IEEE Computer Society Press.1 Parallel Algorithms and Parallelization of Algorithms - Intuitive DesignParallel processing can really only make sense if we understand how to program the parallel hardwarethat the technology is capable of producing. For example, 10,000 personal computers, each capable of 1? supported in part by the National Science Foundation under Grant Numbers MSS-9216479 and CDA-9222827,and, in part, from the Air Force O�ce of Scienti�c Research under contract number F49620-92-J-0546.?? supported in part by the National Sciences and Engineering Research Council of Canada (NSERC) undercontract number OGP0138180-S365A2, and in part, from University of Western Ontario NSERC internalfunding under contract number Z001A8-S365A1. 1

www.manaraa.com

2 ISIPCALA'93MFLOPS, has an enormous aggregate processing power of 10 GFLOPS, however, there is really no wayto exploit this processing power for a realistic single job. Organizing these 10,000 PCs together, using ahigh-speed interconnection, such as in a multicomputer, helps, but the task remains to make the job runwell. This is the study of parallel programming and parallel algorithms.The goal of parallel programming and parallel algorithm study is to �nd a way to break a job intoN units that can execute concurrently on N or fewer processors. Given the complexity of programming,in general, trying to program in parallel seems an insurmountable task. Indeed, a parallelizing compilerwhich transforms a sequential program into a parallel program would be very attractive. This idea, alsocoined the \Dusty Deck Syndrome" has received much research attention.Parallelizing compilers work, for the most part, on identifying certain constructs within the sequentiallanguage. Execution pro�les of computationally-intensive programs can show that often, only a fewpercent of code (by volume) accounts for 50% of the run time of the program. It's not hard to see wherethis lies. DO loops and computational kernels account for a great deal of a program's run time. Loopstypically appear in program code as follows.DO i = 1, 100100 a(i)=b(i)+c(i)This loop parallelizes easily, and is easy for the compiler to detect and produce the following parallel(vector) code which executes all 100 assignments independently, in parallel.a(1) = b(1) + c(1)a(2) = b(2)+ c(2)...a(100) = b(100) + c(100)or a(1 : 100) = b(1 : 100) + c(1 : 100) Now, of course, not all loops are easily decomposed. Sometimesthere are loop dependencies. These can be solved by the introduction of temporary storage. Other times,there are dependencies that cannot be removed, such as in the case of linear recurrences of the formai = ai�1bi + ci; i > 1. FORTRAN code appears as follows,DO 100 i = 2, N100 a(i) = a(i-1)*b(i) + c(i)Notice that the data dependency between a(i) and a(i-1) cannot be parallelized completely. The (rathercomplex) solutiona(1:N) = c(1:N)DO i = 1, log2 NDO in parallel for all Pj where 2i � j � Na(j) = a(j) + b(j)*a(j-2i�1)b(j) = b(j)*(j-2i�1)200 continuebuilds up partial results in parallel, i.e. at i=2, at the end of the parallel statement, we have (for j � 4):a(j) = b(j)*b(j-1)*[b(j-2)*c(j-3)+c(j-2)]+b(j)*c(j-1)+c(j)b(j) = b(j)*b(j-1)*b(j-2)Now while the above construction is complex, once derived, a compiler can identify this loopingstructure and perform the appropriate parallel code substitution.The problem with relying too much on compilers to do our work is twofold:

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 31. A compiler can only detect loop parallelism. Thus, there is still 50% of the run time unaccounted forthat a compiler cannot easily detect. In terms of parallel program performance, this will limit theSpeedup or increase in performance obtained by parallelism.2. The sequential algorithmmay actually obscure parallelism inherent in the problem such that even anideal compiler can't extract it. Indeed, a sequential algorithmmay not be the best parallel algorithm,at all.In the next section we will examine the �rst issue, more closely, when we discuss the metrics ofSpeedup. The second issue is really one of language.1.1 Language as an Impediment to ParallelismThe choice of language really can inhibit the expression of parallelism that may be inherent in an appli-cation. Consider the model of Imperative Language Programming which is the basis for FORTRAN, C,PASCAL, etc. An imperative language, consists of statements which are a sequence of predicate trans-formations on a program's state. For example, an imperative matrix multiplication cl�n = al�mbm�n isexpressed as follows.for i from 1 to lfor j from 1 to mfor k from 1 to nci;k = ci;k + ai;jbj;kThis is the way that matrix multiplication is usually presented. However, it is not clear, at all, howto perform the operations in parallel. Certainly, since this is loop parallelism, we can create l � m � nprocesses, as above. However, a better way is to re-examine the speci�cation of matrix multiplicationrather than its implementation in a particular (here imperative) language.Matrix multiplication is, fundamentally, a collection of inner products of the elements of the multiplierand multiplicand matrices. This is expressed below, in a version of matrix multiplication expressed inFP [3].Given a pair of matrices stored as a sequence of rows,< a;b >, with a =< a1; :::; al > and ai =< ai;1; . . . ; ai;m >c Inner Product � Distribute Left � Distribute Right � [a; transpose(b)]Whose evaluation results in:c Inner Product � Distribute Left � Distribute Right < a;b0 >c Inner Product � Distribute Left << a1;b0 >; . . . ; < al;b0 >>c Inner Product < p1; p2; . . . ; pl > where pi =<< ai; b01 >; . . . ; < ai; b0m >>By the Church-Rosser property, the Inner Products may be applied in parallel in any order. Thus,we note that the execution order is neither constrained nor speci�ed as in imperative languages. Themaximum amount of parallelism is expressed by the functional program.Now the FP example is rather extreme. No one is suggesting that everyone switch to functionallanguages simply to use parallel computing. Note, however, that by analyzing the speci�cation of theproblem, the observation that matrix multiplication is nothing more than a collection of inner products,yields not only the functional program above, but the imperative program, below.do in parallel for Pij; i = 1; :::; l; j = 1; :::;mfor k from 1 to nci;k = ci;k + ai;jbj;kThus, rather than express or constrain the computation of these inner products, as in the imperativealgorithm, we just write an imperative program which is expressed in the fundamental parallel units

www.manaraa.com

4 ISIPCALA'93of the problem. We then feed the inner product computations, in any order, to the processors of thesystem. Thus, rather than a parallel version of a sequential algorithm, this is a parallel algorithm.Successful parallel programming consists of (1) specifying the problem, (2) identifying the funda-mental units and their interaction, and (3) mapping these fundamental units to processes with theirinteractions speci�ed by communication primitives.Given that the only control we have in parallel programming, at the system level, is process creationand send/receive communication, all examples can be constructed using this primitive set of operations.Later we will present a more formal model of this in Hoare's CSP [14].1.2 PARALLEL SORTINGConsider the problem of sorting an array a into ascending order using the a (very simple) SequentialSorting Algorithm (Exchange Sort).Sort N numbers a(1), a(2), ..., a(N) into ascending orderfor i from 1 to Nfor j from 1 to Nif (a(i) > a(j))temp=a(i)a(i)=a(j)a(j)=tempThis algorithm runs in N2 comparisons. If we identify the fundamental units and operations insorting, the compare/exchange is the basic function which operates on the array elements. If we haveN processors available we should be able to make it run in N time by using the N processors to do Ncomparisons in parallel.ODD-EVEN Transposition Sort If we arrange the N processors in a linear array and let processor Pihold value a(i), then processors alternately exchange their values based on whether their index is evenor odd.Code for each processor Pifor j = 0; N � 1do in parallel for all Pi, i = 0; N � 1if j is even and i is even or j is odd and i is oddsend a(i) to Pi � 1receive a(i) from Pi � 1else receive a(i+1) from Pi + 1if a(i+1) < a(i)temp=a(i)a(i)=a(i+1)a(i+1)=tempsend a(i+1) to Pi + 1endThis achieves the desired result, a parallel algorithm which runs in N time on N processors.1.3 RelaxationPerhaps the most important use of parallel computing is the relaxation methods for solving, iteratively,Partial Di�erential Equations of the form @2u@x2 + @2u@y2 = 0

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 5-- --

maxminmin max

maxmin

min maxmaxmin

min max

maxminmin max

maxmin

min max

min max

maxmin

maxminmin max

876532

875632

857362

583726

538276

532867

min max

even-odd

even-odd

odd-even

odd-even

0 54321

7 8 6 2 3 5

odd-even

even-odd

-- --

Fig. 1. Odd-Even Transposition SortA numerical approximationU to the solution u yields the matrix formAU = 0where the matrix A is a sparse, tridiagonal, system of linear equations.The problem of parallelizing a solution to this seems insurmountable. However, this problem isamenable to Domain Decomposition which splits the physical model's domain over the processors as inthe point discretization of Figure 2.
-- --

-- --Fig. 2. Discretization of Physical Domain { Domain Decomposition

www.manaraa.com

6 ISIPCALA'93Let U = (Ui;j) be the approximation of the solution uU (k+1)i;j = 14(U (k)i;j+1 + U (k)i;j�1 + U (k)i+1;j + U (k)i�1;j)Each point (element) is iteratively solved as a function of its neighbors as in Figure 3.
-- --

i,j-1

i,j+1

i+1,ji-1,j i,j

-- --Fig. 3. Localized Computational Molecule1.4 NUMERICAL INTEGRATIONAs another example of domain decomposition, consider the problem of an approximation to calculating� using numerical integration. � � f(x) = 4 Z 10 11 + x2dxThe natural numerical decomposition is to break the problem domain into strips and calculate thenumeric function value at each strip to approximate the solution to the problem.Pi:return 1N f(xi)In parallel, each Pi gets 1=N 'th of the integration to perform, as in Figure 4. A tree reductionsummation is used to sum up all the slices in logarithmic time.1.5 SummaryIn creating a parallel algorithm, one must start with the speci�cation of the problem to be solved.From this speci�cation, identi�able units can be extracted that can be solved in parallel. Attempting to\engineer" a parallel solution from an existing sequential code, written in an imperative language, willnot yield the best parallel algorithm since the imperative language imposes a computational order thatdoes not always express the maximal parallelism present in the problem.The remainder of this paper will explore metrics for measuring parallel performance, algorithmicclasses of parallel algorithms, and a formal methods of reasoning about parallel programs.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 7
-- --

P12P11P10P9P8P7P6P5P4P3P2P1P0

4

10

-- --

Fig. 4. Domain Decomposition2 Analysis of Parallel AlgorithmsIn the previous section, we presented a vague idea of how to measure the e�ectiveness of a parallelalgorithm. In this section, we re�ne these concepts and present a theoretical basis for parallel algorithmperformance.2.1 SpeedupFrom a hardware standpoint, it's easy to build parallel hardware with enormous speed ratings. Whatthe user desires is a machine to make his/her job run fast. If we assume that we can decompose the jobinto N parts, then speedup is just how much faster the decomposed job runs on N processors. Speedupmeasures address both the optimal and expected performance.Figure 5 characterizes the best case, pessimistic case, and average case for possible speedups.Minsky's conjecture [17] forms a lower bound on what we can reasonably expect from a parallelprogram. The key observation is that as N grows, the performance becomes dominated by systembottlenecks and communication. Thus, perhaps the best speedup, S is O(log2N). This is a disappointingresult, if true, as it says there is not much bene�t from parallelism beyond only a few processors.In sharp contrast to Minsky's conjecture is the notion of ideal speedup. For ideal speedup to be real-ized, the problem must be perfectly decomposed in N parts and no communication or system bottlenecksmust occur. Then the speedup is linear, as N grows, the speedup S = N .Between these two extremes, are two measures of what occurs when system bottlenecks, overhead,imperfect parallel decomposition occur.Amdahl's law [1] treats every program as consisting of a sequential component s and a parallelcomponent p = 1 � s. The crucial observation is that a program's speedup will be limited, severely,by the amount of non-parallelizable code. Simply put, if there are N processors, then the speedup S isbounded as follows: S � s+ ps + pNFor example, if N = 1024 and s = 0, thenS � 10 + 11024

www.manaraa.com

8 ISIPCALA'93-- --

0 20 40 60

0

20

40

60

S
p
e
e
d
u
p

(S)

N - Number of Processors

Minsky’s Conjecture

Ideal Speedup

Amdahl’s Law

-- --

Fig. 5. Speedup Modelsor S � 1024, which is, essentially, the ideal speedup case. However, if even a small sequential componentis present, such as if N = 1024 and s = 0:01, thenS � 10:01 + 0:991024or S � 91:18.Under the Amdahl's law speedup model, the limitations of parallelizing compilers become apparent.If we believe that 50% of the code is recognizable as parallel (p = 0:5), then 50% is not parallelizable(s = 1� p = 0:50). Thus the maximum speedup islimN!1 S � limN!1 10:50 + 0:50Nor S � 2 no matter how many processors are used!These results seem disappointing. However, [12] in 1988 observed that programs are made parallel,for the most part, as they are have run times which grow as the problem scales. This scaling can be a�ner grid resolution or an increase in the number of time steps proportional to the number of processorsin the system. However, the sequential time, which is the time to load the program, collect the results,and perform overhead calculations remains relatively constant over varying computational problem sizes.This Scaled Size model assumes that, by contrast to Amdahl's law, p is not independent of N . Thus, wecan calculate a scaled speedup Ss, as Ss = s + p �Ns + pExperimental results using this speedup measure report scaled speedups of 1020 on a 1024 processormachine [12]. There is still much debate, however, on the usefulness of this model.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 92.2 Theoretical Basis for SpeedupGiven the two speedup models for S and Ss given above, it is easy to calculate the speedup for aparticular application. However, if the actual ratios p and s are not known, then experimentation isnecessary. However, given that the best tools available are parallelizing compilers, determining p may bedi�cult since the p obtained is only an estimate of the amount of parallelism inherent in the problem.What is necessary is a way of classifying algorithms by their parallel complexity. The class NC is one suchclass. To explore the class NC, we need to �rst examine the fundamental nature of parallel processes.2.3 CSPHoare's model of concurrent programming, Communicating Sequential Processes (CSP) [14], is a modelreecting properties that should be in all concurrent programming languages. It was not intended to beused as a programming language per se, but it does reect Hoare's concerns of proving the correctness ofprograms. However, CSP has provided a medium of discussion of synchronous systems and has inspireda great deal of development. One result is the multitasking and rendezvous properties of Ada. Hoarehas suggested the following three properties that every concurrent language should have: the ability toexpress parallelism, communication primitives and non-determinism. This section provides an informalbrief description of the syntax and meaning of CSP commands. Full details of CSP are contained in [14].Communicating Sequential Processes (CSP) was proposed as a preliminary solution to the problemof de�ning a synchronous message-based language.A CSP program consists of a static collection of processes. The basic command of CSP is [�1k:::k�n]expressing concurrent execution of sequential processes �1; :::; �n. Each individual process �i has a distinctaddress space and consists of statements Si. We can also express parallelism between program statementsas well as between processes.Coordination between processes is implemented by message exchange between pairs of processes. Itinvolves the synchronized execution of send(output) and receive(input) operations by both processes. Thesend and receive operations in processes �j and �i take the following forms: �i!y and �j?x, respectively.Input command �j?x expresses a request to �j to assign a value to the (local) variable x of �i.Output command �i!y expresses a request to �i to receive a value from �j . Execution of �j?x and �i!yis synchronized and results in assigning the value of y to x. �j?x and �i!y are said to be a matching pairof communication statements. We de�ne a communication sequence of process �i as the sequence of allcommunications that �i has so far participated in.The alteration command allows for a path to be non-deterministically chosen from a set of paths.The repetition rule allows for repeated non-deterministic choosing of a path from a set of paths.The alteration and repetition commands are as follows:if b1; c1 ! S12:::2bn; cn ! Sn �do b1; c1! S12:::2bn; cn! Sn odAlteration and repetition are formed from sets of guarded commands. A guarded command b; c ! Sconsists of a guard b;c and a command S. In the guard, b is a boolean expression and c is either skipor one of the communication primitives. The symbol \;" is used as a delimiter for separating di�erentprogram statements. If b is false, the guard is failed. If b is true and c=skip, the guard is ready. If bis true and c is one of the communication primitives, then the guard is prepared to communicate withthe process named in the communication primitive. It is ready when the other process is prepared tocommunicate and blocked at other times.Execution of an alteration command selects a guarded command with a ready guard and executes thesequence c;S. If c is skip, execution is independent of other processes. If c is a communication command,then a matching communication command must be executed simultaneously. When some guards areblocked and none are ready, the process is blocked and must wait. If all guards are failed, the processaborts.

www.manaraa.com

10 ISIPCALA'93Execution of the repetitive command is the same except that, whereas execution of alternation selectsone guarded command and is completed, for repetition the selection is repeated until all guards are failed,at which time execution of the repetition is repeated until all guards are failed, at which time executionof the repetition is completed.2.4 ComplexityThe questions of complexity and computability that exist for sequential computer programs, are alsointeresting questions for concurrent/parallel computer programs. If the Turing Machine is the abstractcomputationalmodel for a sequential program, what is the corresponding model for a concurrent programand how does this model relate to the sequential Turing Machine model?From [15], the fundamental measures of complexity are parallel time, space, and sequential time. Ifwe have an abstract model which provides these three measures, then we can succinctly de�ne speedupand characterize classes of algorithms which are amenable to parallelism.If the model of concurrent computation is represented by CSP, concurrent programs are really ex-pressed by sequential programs that communicate with each other. Since the Turing Machine is themodel of sequential programs, it is natural to express a concurrent program as a set of communicatingTuring machines. Speci�cally, a concurrent program is represented by a Multitape Turing machine whichhas a read-only input tape, k work tapes (k > 1), and a write-only output tape. Roughly, the input tapeand output tape correspond to the message passing that occurs in CSP ?; ! barrier rendezvous and eachwork tape corresponds to the internal storage of one of the k processes of the CSP program.De�nition1. Formally, a Turing Machine (TM) is described byM = (Q; I;�; �; [; q0; F)where Q is the �nite set of states, � is the tape alphabet, I � � is the input, � is the move function, [is a special blank symbol, q0 2 Q is the start state, and F � Q is the set of �nal states.De�nition2. For a TM M and input w, t(w) is the total number of steps taken for input w andt(n) = maxft(w) j jwj � ngis the time complexity of M .De�nition3. For a TM M and input w, s(w) is the total maximum length of any work tape used forinput w and s(n) = maxfs(w) j jwj � ngis the space consumption of of M .De�nition4. Let ID be the instantaneous description of M ,ID � ��Q�� � xqywhere xy are tape contents and the tape head is scanning the leftmost symbol of y in state q and `represents a move of M .De�nition5. Let ID0 ` ID1 ` ID2 ` � � � be a computation of M for input w. If, in two successivesteps, ID ` ID0 ` ID00 a work tape moves in di�erent directions, we say a head changes its movementduring ID ` ID0 ` ID00. De�ne (i; j); i < j as a phase of this computation if no work tape head changesits movement direction during IDi ` IDi+1 ` IDi+2 ` � � � ` IDj where in ID ` ID0, every tape headmoves R;L; or S where R and L are di�erent directions and S is no movement.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 11Next we de�ne a machine which will help relate the phases to the concept of data dependenciesbetween sequential processes through message passing.De�nition6. Let a Transform Machine be a TM constructed fromM adding a special state q0. Uponentering q0, it removes all the contents from the input tape, copies the output tape to the input tape,changes the work tape and output tape to blanks, and works normally starting in state q0.De�nition7. The width complexity w(n) is the maximum total length of the input and output tapecontents during the computation for all input of length � n.Remark. What these de�nitions show is that if we can use n work tapes in a single phase, independently,this implies there are no data dependencies between the work tapes. The end of a phase (entering state q0)implies that a communication or synchronization is necessary. Thus, in the Turing Machine formulation,the width complexity corresponds to the total amount computational space (complexity) and the spacecomplexity corresponds to the longest space complexity of an individual work tape (process).A special type of transform machine is of interest, since it describes a computation which is amenableto parallelism in logarithmic time.De�nition8. If a transform machine satis�ess(n) = O(log(w(n));it is a Log-Space Transform Machine (LSTM).For example, there is a LSTM that satis�es the computation of a tree-reduction summation.Example 1. An LSTM which satis�es the computation of Pxi for x1#x2# � � �#xk where the X 0ks arebinary numbers as input as follows.In Phase 1, M gets y1#y2#y3# � � � on its output tape where yi = x2i + x2i+1.In Phase 2, M y1#y2# � � � becomes the input and M gets z1#z2# � � � on its output tape wherezi = z2i + z2i+1.This continues until the output isPxi. This clearly takes logk phases. The width complexityw(n) =O(n); k � n and the phase complexity is log k.The problems that can be solved by a LSTM form a complexity class, NC.De�nition9. A problem is in NC if there exists an LSTM solving it in polynomially related phaseO(log� n) and width O(n�) where g(n) = f�(n) if g(n) = p(f(n)) for some polynomial, p.Thus, the class NC represents the class of nicely parallelizable problems with time polynomial in thelogarithm of the size of the problem (poly-log) using only a polynomial number of processors. Clearly anyproblem in P is in NC, since any problem in NC when solved serially, is in P. However, the reverse is notnecessarily true since, for example, the best-known parallel algorithm for maximum ow is O(n2 logn)steps using O(n) processors.2.5 NP-Completeness and Parallel ComputingWhile the results above show that the class NC contains problems amenable to parallel computing, thereare algorithm classes in which parallel computing is ine�ective.The class of NP-Complete problems, or those solvable in nondeterministic polynomial time form justsuch a class. Since it is not known if any NP problems can be solved in deterministic polynomial time,attempting to solve an NP-complete problem requires exponential time on a sequential computer.

www.manaraa.com

12 ISIPCALA'93Since, by the above discussion, that our notion of a parallel computer is really expressed by a multitapeTuring Machine, and, since multitape and single tape Turing Machine computations are related, then,by the Church-Turing hypothesis, any NP-Complete problem can be expressed as a parallel algorithmon the multitape Turing machine. However, by our notion of speedup, S, using N processors, the bestspeedup is N , a linear factor. However, an exponential problem, E, grows in some exponential power ofN , E = O(cN). Thus, since a parallel machine grows in power, only linearly, it cannot e�ectively reducethe exponential complexity of the problem. Put more succinctly, parallel computers only reduce thecomplexity of an exponential problem by a polynomial factor S, thus, leaving the complexity exponentialsince E=S = CN=N is still exponential.However, parallel computers are useful in evaluating expensive hueristics for approximation to thesolution of NP-Complete problems. Techniques such as simulated annealing [23] provide good results,but are computationally complex. Parallel computing can help speed their evaluation.3 Interconnection Networks and EmbeddingsIn the presentation so far, we have assumed that all processors are connected to each other (a completelyconnected network). The crossbar switch [17] attempts to connect each processor to each other processor.However, the number of switch elements grows as the square of the number of processors, making thistechnology infeasible for large multicomputer networks. The bus interconnection [17], by contrast, isinexpensive, but exhibits a performance bottleneck as interprocessor communication grows.Multistage interconnection networks attempt to minimize the cost of interconnecting processors byproviding a subset of possible interconnection patterns between the processors, at any one time. Examplesof multistage interconnection networks are shown in Figure 6. Each network is arranged in n stages whereeach stage has N=k k � k switches, each with N = kn ports. Thus, each processor can communicatewith each other processor using n hops in the switch, however, as mentioned above, only a subset ofsimultaneous connections are possible.The multistage interconnect is the basis for many commercial and research parallel processors suchas PASM [34] and the IBM RS/6000-based POWERparallel 1 (SP1) System [18]. However, if we exam-ine the examples of Section 1 the communication patterns between processors are all nearest neighbor.Indeed, the most natural parallel algorithms result from domain decomposition into spatially local com-munication patterns such as mesh, ring, or tree. Thus, a �xed architecture which can be a host to theseguest graphs is all that is really necessary.A �xed interconnection topology is the usual choice in constructing multicomputers. The topologyis based on a graph theoretical model in which processors are represented by nodes or vertices and linksare represented by edges so that all links are bidirectional.A path is a sequence of links from the source node to a destination node. The path length (distance)between two nodes is the minimum number of links between these two nodes. The degree of a node isthe number of links (bidirectional) connecting to a node.3.1 Graph EmbeddingThe need for the embedding arises from at least two di�erent directions. First, with the widespreadavailability of distributed memory architectures based on the hypercube interconnection scheme, thereis an ever-growing interest in the portability of algorithms developed for architectures based on othertopologies, such as linear arrays, rings, two-dimensional meshes, and complete binary trees, into thehypercube. Clearly, this question of portability reduces to one of embedding the above interconnectionschemes into the hypercube. Second, the problem of mapping parallel algorithms onto parallel architec-tures naturally gives rise to graph embedding problems. Graph embedding problems have applications ina wide variety of computational situations. For example, the ow of information in a parallel algorithmde�nes a program graph and embedding this into a network tell us how to organize the computation on

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 13-- --

0

1

2

3

4

5

6

7

0 0 0 0 00

1

1

1

1
1

1

22

2

2
2

2

3 3

3 3

3
3

4 4

4 4

4 4

5 5

5 5

5 56 6

6 6

6
6

7 7 7 7 7 7

An 8×8 Omega network

11
7
3

14
10
6
2

9
5
1

12
8
4
0

13

15 15

13

0
4
8

12

1
5
9

2
6

10
14

3
7

11

A 16 node BBN Butterfly interconnection stage

-- --

Fig. 6. Sample Multistage Interconnection Networksthe network. Other problems that can be formulated as graph embedding problems are laying out cir-cuits on chips, representing data structures in computing memory, and �nding e�cient program controlstructures.The problem of mapping a graph representing the computation and communication needs of theprogram onto the underlying physical interconnection of a multiprocessor so as to minimize the commu-nication overhead and maximize the parallelism is called the mapping problem. The mapping problemis the assignment of processes to processors so as to maximize the number of pairs of communicatingprocesses that fall on pairs of directly connected processors.In mapping problems, the guest graph G is the network topology that we are interested in simulatingusing a host graph H. Let VG and VH denote the vertex sets of the graph G and H, respectively, and EGand EH denote the edge sets of the graph G and H, respectively. An embedding f of a graph G into agraph H is a mapping of the vertices of G into the vertices of H, together with a mapping of the edges ofG into the simple paths ofH such that if e = (u; v) 2 EG, then f(e) is a simple path ofH with endpointsf(u) and f(v). If f(e) has length greater than one, then it has one or more intermediate nodes whichare all nodes on the path other than the two endpoints. An embedding f is isomorphic if it is injectiveand for each (u; v) 2 EG; (f(u); f(v)) 2 EH . Throughout this paper, unless indicated otherwise the term\embeddings" will always means isomorphic embeddings, and the terms \embedding" and \mapping"will mean the same and used interchangeably.It has been known for a long time that the general graph embedding problem (i.e., subgraph iso-morphism problem) is NP-complete. It was shown that the embedding of general graphs into the binaryhypercube is also NP-complete [6]. However, with rich interconnection structure the hypercube con-tains as a subgraph many the regular structures (i.e., rings, two-dimensional meshes, higher-dimensionalmeshes, and almost complete binary trees). Most of the mapping research in these years has dealt withe�ectively simulating these regular structures in the hypercubes, (for example, [36]).Let f be an embedding function which maps a guest graph G into a host graph H. jVGj denotes the

www.manaraa.com

14 ISIPCALA'93-- --

(a) full-ring tree (b) binary tree (c) star

(d) chordal ring (e) ring (f) fully connected

(g) 3-ary 2-cube (h) 2-D mesh (i) lattice

(j) 3-ary 3-cube (k) 3-D cube (l) 3-D cube connected cycle

-- --

Fig. 7. Some Interconnection Topologiescardinality of the set VG. Terminology related to the mapping problem are formally de�ned as follows.De�nition10. The expansion of the mapping is the ratio of the size (in number of nodes) of the hostgraph to that of the guest graph, that is, Ef = jVHjjVGj . If the embedding is injective, then the expansionis a measure of processor utilization.De�nition11. The edge dilation of edge (i; j) 2 EG is dist(f(i),f(j)). The dilation of the mapping isDf = max(dist(f(i); f(j)); 8(i; j) 2 EG. The average edge dilation is 1jEGj P(i;j)2EG dist(f(i); f(j)). Thedilation of a mapping represents the communication delay between the communication nodes.De�nition12. The congestion of an edge e0 2 EH is the cardinality of e 2 E(G): e0 is in path f(e).That is,Pe2EG je0 \Ef(e)j. The congestion of the mapping is maxfPe2EG je0 \Ef(e)jg, 8e0 2 EH . Theaverage congestion of the mapping is similarly de�ned.De�nition13. The max-load is the maximum number of nodes in G that are mapped to a node in H.Max-load = 1 if the mapping is one-to-one.It should be noted that unit dilation implies unit congestion. Thus the class of dilation-1 embeddablegraphs in a hypercube is a proper set of the class of congestion-1 embeddable graphs. If each nodeof the guest graph is mapping to a distinct node of the host, the slow down due to nearest neighborcommunication in the original graph being extended to communication along paths is a function of thelength of the path (i.e., edge dilation) and the congestion of the edges on the path.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 153.2 The k-ary n-cube Interconnection TopologyOne of the most general type of interconnection network is the k-ary n-cube which has kn nodes organizedas a cube with dimension n and k nodes in each dimension. Each node i is identi�ed by an n-digit radixk number, the b-th digit of the number represents the node's position in the b-th dimension. The nodesare interconnected to their nearest neighbors in a radix k representation as follows.De�nition14. If in�1 � � � i0 is the radix k representation for node i, then its neighbors in the intercon-nection are in�1in�2 � � � ib+1i+b ib�1 � � � i0and in�1in�2 � � � ib+1i�b ib�1 � � � i0 for each 0 � b � n� 1where i+b = (ib + 1)mod kand i�b = (ib � 1)mod kAn example of a 3-ary 2-cube is shown in Figure 7 g.Some special cases of this topology are the k = 2 case of the hypercube or boolean n-cube. For n = 2a superset of a a k dimensional mesh is generated and n = 1 speci�es a ring.Boolean n-cube Various supercomputer architectures interconnecting hundreds or thousands of pro-cessors have been proposed for many years. The Hypercube is used on both SIMD and MIMD parallelprocessors. Some commercial examples are the NCUBE/2, the Intel iPSC/860, and the CM-2.An n-cube system has N=2n nodes (processors) indexed from 0 to 2n�1 and there is a link betweenany two nodes if and only if the binary representations of their indices di�er by exactly one bit. Ann-cube can be recursively constructed by combining two (n � 1)-cubes. Let (an�2 . . .a0) be an indexin (n � 1)-cube. Then in n-cube, there is a link between two corresponding nodes in (n � 1)-cube,(0an�2 . . .a0) and (1an�2 . . .a0). A 2-ary 3-cube is shown in Figure 8.-- --

000 001

010

100

011

101

111110

0

2
1

Fig. 8. A 2-ary 3-cube

www.manaraa.com

16 ISIPCALA'933.3 Pattern Embedding in a HypercubeThe hypercube is a powerful topology because it is a superset of many other topologies, such as ring,mesh, and tree. Commonly, each of these nodes in these topologies is given a binary representation.However, the binary representation chosen needs to preserve the nearest neighbor adjacencies present inthe k-ary n-cube representation. Fortunately, the Gray-code provides just such a representation.De�nition15. A Binary Reected Gray Code (BRGC) Gk is a code of length k such thatGk�1(il) is the k�1-bit Gray code representation of digit il of the radix k�1 number i and Gk�1(il)Ris its reversal. Gk =8>><>>:f0; 1g if k = 1f0Gk�1(0); 0Gk�1(1); . . . ; 0Gk�1(2k�1 � 1);1Gk�1(2k�1 � 1); 1Gk�1(2k�1 � 2); . . . ; 1Gk�1(0)g= f0Gk�1; 1GRk�1g k > 1Ring Embedding Rings are of interest, and are of increasing interest, due to the computationalproblems that arize in genetics. One of the central questions of molecular biology is the discovery of thesemantics of DNA. Just knowing the syntax, that is, the sequence, tells the biologist little. The biologistmust understand the biochemical functions of the DNA. To understand the semantics, one needs to knowthe relationship between DNA and proteins. The essence of the problem is that given a set of proteinsequences, e�cient alignment-matching algorithms are needed that can deal elegantly with insertion,deletion, substitution, and even gaps in the series of sequence elements. One way of measuring theoptimality of an alignment is by computing a score based on a matrix of weights reecting the similaritybetween pairs of sequences. In some situations a penalty is subtracted for each gap introduced. Such ascore can be computed by a dynamic programming algorithm in time proportional to the product of thelengths of the sequences.The subsequence matching problem can be formulated as follows:Given two sequences A, B, of symbols chosen from a same domainA = (a1; a2; :::; an); B = (b1; b2; :::; bm);�nd the subsequences A0 = (ai1 ; ai2 ; :::; aix); B0 = (bj1 ; bj2 ; :::; bjx)where 1 � i1 < i2 < ::: < ix � n; 1 � j1 < j2 < ::: < jx � mwhich maximizes the comparison function C(A0; B0). C can depend on the symbols ail , bjk in A0 and B0and on the numbers of symbols in A and B which are omitted between successive symbols in A0 and B0(gaps).For such comparison functions, one can use a dynamic programming algorithm to determine the bestsubsequence match for a given pair of sequences A, B in serial timeO(mn) where n and m are the lengthof the sequences A and B. This dynamic programming algorithm can best be understood by consideringthe matrix Cr;s = max8>><>>:0Cr�1;s�1 +D(ar ; bs)Cr�1;s + gCr;s�1 + gwhere the gap constant g < 0, and D is a correlation function between single elements [19].A parallel version of the dynamic programming algorithm is quite straightforward to derive [8]. Sincecomputing the value of Cr;s only depends on knowing the values of Cr�1;s, Cr;s�1, and Cr�1;s�1, we seethat all of the elements on one anti-diagonal of the matrix can be computed simultaneously if the valuesalong the two previous anti-diagonals are known. That is, for a �xed value of t, the matrix elements

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 17Ct�s;s can be computed simultaneously for all s provided that they are known for t� 1 and t� 2. Thus,one can parallelize the above algorithm by computing successive anti-diagonals of the matrix Cr;s onsuccessive time steps. This is represented schematically in Figure 9. The algorithm requires n +m � 1time steps and m processors to compare proteins of length m and n.-- --

1

2

3

time
step

n+m-2

n+m-1

0 1 2 3 m-1 m

C11

C21 C12

C31 C22 C13

Cn,m−1 Cn−1,m

Cn,m

Processor #

-- --

Fig. 9. Diagram indicating activity of processor i at time step t. If 1 � t� p � n, then processor i computesCt�p;p+1 at step t. Otherwise, the processor is inactive.Since each communication in the above algorithm is nearest neighbor, mapping the ring computa-tional structure to directly connected processors is important.Theorem16. A k-ary 1-cube is a subgraph of a 2-ary n-cube when n = log2 k and k = 2j for someinteger j.Proof. The idea is to number the nodes of the k-ary 1-cube using a BRGC. For each node i of the k-ary1-cube, re-number that node by Gk(i) = gk�1gk�2 � � �gl � � �g0. The predecessor and successor nodes ofthe k-ary 1-cube are numbered (from De�nition 14 with n = 1)i� and i+where i+ = (i + 1) mod k and i� = (i � 1) mod kwhich, using the de�nition of Gk are the nodesgk�1gk�2 � � �gl � � �g0

www.manaraa.com

18 ISIPCALA'93and gk�1gk�2 � � �gl+1gl � � �g0Corollary17. A ring of length of 2m can be mapped into the 2-ary n-cube when 2 � m � n.Proof. Since a 2-ary n � 1 cube is a subgraph of a 2-ary n-cube, the result is immediate.If we notice that a ring of length 2n exists within a Gn because a path of length of 2n�1 exists withinthe �rst half of Gn(= 0Gn�1) and is connected to a path of length of 2n�1 within the second half ofGn(= 1GRn�1), then we can also construct rings of any even length by starting with shorter paths.Corollary18. A ring of length p = 2q can be mapped into the 2-ary n-cube when 4 � p � 2n.Proof. Find a path of length q as followsf0Gn�1(i); 0Gn�1(i + 1); . . . ; 0Gn�1(i + q � 1);1Gn�1(i + q � 1); 1Gn�1(i + q � 2); . . . ; 1Gn�1(i)gFor example, of a ring of lengthp = 12 : f0011; 0010; 0110;0111;0101;0100; 1100;1101; 1111;1110; 1010;1011gMesh Embedding Of great interest in Computational Science and Engineering is programs whosestructure is the mesh. Consider the mode uids problem [32] of cavity-driven ow whose physical domainchosen is shown in Figure 10. The pair of non-linear coupled di�erential equations 1,2 that describe thisow are easily solved sequentially using a standard second-order central di�erencing scheme. Centraldi�erencing calculates the new values at a particular point by taking a weighted average of the valuesof the nearest neighbors, as shown in Figure 11, where the weights are dependent on the ow patterns.� = �r2 (1)@�@t + @@x (u�) + @@y (v�) = 1Rer2� (2)where u = @ @y and v = � @ @x .These two equations represent the ow conditions in the physical domain. Lines of constant streamfunction, , value are parallel to the local ow, while the vorticity, �, is a measure of the local shearingrate, or swirl, in the ow.These equations were solved using successive over-relaxation with the resulting discrete equations asfollows: k+1i;j = ki;j + !2(1 + �2) � ki+1;j + ki�1;j + �2 � ki;j+1 + ki;j�1�� �i;j�x2� (3)�n+1i;j = �ni;j + �t ��uni+1;j�ni+1;j � uni�1;j�ni�1;j2�x + �vni;j+1�ni;j+1 � vni;j�1�ni;j�12�y+ 1Re ��ni+1;j + �ni�1;j � 2�i; jn�x2 + �ni;j+1 + �ni;j�1 � 2�ni;j�y2 �� (4)where ! is the over-relaxation factor and � = �x�y .Superscript k indicates the current iteration value and n is the value at the current time. Theboundary values for � are calculated by using �rst-order accurate, away-from-the-wall equations:

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 19-- --

z = ∂p/∂y + ∂u/∂y

ψ = 0,

ψ = 1,

ψ = 0

z = ∂p/∂x

z = ∂p/∂y

ψ = 0

z = ∂p/∂x

-- --

Fig. 10. Cavity Driven Flow
-- --

i,j-1

i,j+1

i+1,ji-1,j i,j

-- --Fig. 11. Localized Computational Molecule

www.manaraa.com

20 ISIPCALA'93�i;w = � 2�y2 (i;w � i;w+1) �+ui;w�y � (5)�w;j = � 2�x2 (w;j � w+1;j) (6)In equations 5 and 6, w is the location of the boundary, and the bracketed term is only used at thetop of the cavity, where the external ow a�ects the values.The standard solution method is to take an initial guess of the values of u, v, and �, along with a�t appropriate for the �neness of the grid, and iterate equation 4 once. These values are then used toiterate equation 3 to convergence, update the values of u and v, calculate the boundary values for �,then repeat the process until the values of � and have both met desired convergence criteria.Optimal Matrix Multiplication (in the abstract sense) As another mesh problem, consider Gentleman'sAlgorithm [11] which is an explicit parallel solution using a 2D mesh of processors to multiply twomatrices.Assume we have N2 processors arranged in an N � N mesh. Each processor �i;j holds ai;j and bi;jand we have a toroidal mesh (an easily implemented subgraph of an n-cube).Optimal OMEGA(n) Algorithm:foreach �i;j SEND and RECEIVE toleft circular shift all a0i;js by i � 1up circular shift all b0i;js by j � 1foreach �i;jci;j ai;jbi;jdo n� 1 timesleft circular shift ai;j; up circular shift bi;jci;j ci;j + ai;jbi;jExample 2. Consider the example of matrix multiplication shown in Figure 12. The result c2;3 is calcu-lated as follows, c2;3 a2;1b1;3 + a2;2b2;3 + a2;3b3;3 + a2;0b0;3-- --

a3,2b2,3
a3,1b1,2

a3,0b0,1

a3,3b3,0

a2,1b1,3
a2,0b0,2

a2,3b3,1
a2,2b2,0

a1,0b0,3
a1,3b3,2

a1,2b2,1
a1,1b1,0

a0,3b3,3
a0,2b2,2

a0,1b1,1
a0,0b0,0

Fig. 12. Toroidal Shift

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 21Embedding Results for MeshesTheorem19. A k-ary 2-cube is a subgraph of a 2-ary n-cube when n = 2 log2 k and k = 2j for someinteger j.Proof. As in the proof of Theorem 16, we number the digits of the k-ary graph using Gj. Speci�cally, foreach node i = i1i0 of the k-ary 2-cube, re-number that node by Gj(i1)Gj(i0). Consider the 4 neighborsof i, i1i+0 i1i�0i+1 i0 i�1 i0where i+ = (i + 1)mod jand i� = (i � 1)mod jand their Gray code ordering G(i1)G(i+0) G(i1)G(i�0)G(i+1)G(i0) G(i�1)G(i0)Since we change only one dimension of i at a time for each neighbor, we can consider each mappingindividually, as in the ring case. Using the de�nition of Gj, a particular im, G(im)'s neighbors are thenodes gj�1gj�2 � � �gl � � �g0and gj�1gj�2 � � �gl+1gl � � �g0Thus, each Gj(im) enumerates a 2-ary j-cube. Taking the cross product of Gj(i1) � Gj(i0) yields a2-ary n-cube.A d-dimensional mesh is an m0 �m2 � :::md�1 mesh in the d dimensional space. An example of d = 3is shown in Figure 13-- --

000

100

010

110

001 002

011 012

101 102

111 112

Fig. 13. 3D Mesh InterconnectionCorollary20. An m0�m1�� � ��md�1 mesh in d-dimensional space, where mi = 2ki and Pd�1i=0 ki = ncan be mapped into a 2-ary n-cube where the mapping is Gkd�1(id�1)� � � � � Gk1(i1) �Gk0(i0).

www.manaraa.com

22 ISIPCALA'93Pyramid Embedding Tree computations occur more infrequently than either the mesh or ring, how-ever, an extension of the tree, the pyramid, occurs frequently in multigrid algorithms.The Multigrid Method The initial idea behind multi-grid is that convergence time decreases dramaticallywith an improved initial guess. From this idea, it seems reasonable to use a coarse grid to get a roughsolution, and then interpolate this answer to �ner and �ner arrays as shown in Figure 14. Although thisdoes work, multi-grid methods are much more powerful than this simple concept. Given the system of-- --

l=2

l=1

l=0

-- --

Fig. 14. Multgrid structure for N=16 Processors at the Finest Levelequations AU = F; (7)the usual procedure is to guess a solution, V, to U, then calculate AV and correct the guess bycomparison to F. The estimate V is known to be some amount E away from the exact solution, givingU = V + Eand by substituting into equation 7, A(V +E) = F:Initially, this doesn't help since neither U nor E is known. However, after rearranging,AE = F�AV

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 23and �nally, AE = R; (8)where R denotes the residual, R = F � AV. This resulting equation can be solved exactly as the�rst equation, since all of the variables except E are known.The reason why equation 8 is solved instead of equation-7 has to do with the size and frequency ofthe error. If the error in the value is small, but not yet small enough to satisfy convergence criteria, andthe absolute value of the result is large, the small error will be hard to distinguish from the result. Ifinstead, the values are subtracted out, the magnitude of the error will then be centered around zero, sothe relative size of the error will be magni�ed.The observed frequency of the error is dependent on the coarseness of the array, as shown in Figure 15.What may be seen as a relatively smooth change at the �nest level appears as rapid changes whenrestricted to a coarser level. Thus, solving the errors at a coarser level increases the speedup of thesolution by damping out the errors faster, along with increasing convergence rate due to better guesses.-- --

-- --

Fig. 15. Error Frequency Reduction Using MultgridAs illustrated in Figure 16 and as described by [4], there are many ways to implement the multi-grididea. In the �gure, level 0 represents the �nest array of points, while level 3 is the coarsest.In the V-cycle, level 0 does a set number of iterations of equation 7, then passes its residuals tolevel 1. Level 1 then iterates equation 8 and passes its residuals to level 2, where the process is repeateduntil the coarsest level is reached. When the coarsest level �nishes its computations, it passes the errorcorrections back down through the levels, until level 0 is reached.

www.manaraa.com

24 ISIPCALA'93-- --

3

2

1

0

3

2

1

0

3

2

1

0Level

FMV-cycle

W-cycle

V-Cycle

R1 E1 E1 E1

V1 V2 V1 V2 V1 V2

V1 V2 V1 V2

V1 V2

-- --
Fig. 16. V and W Cycles of the Multigrid MethodThe W-cycle takes additional advantage of the speed of the coarser grids by having them also dosome improvement of the errors before the errors get passed back down the levels. This helps speed upthe damping out of the smooth changes since the coarser levels converge faster.Finally, the full multi-grid (FMV) cycle takes advantage of both the error correction and improvedinitial guesses. Instead of starting at the �nest level, FMV-cycles start at the coarsest arrays and computean initial guess that is passed down to the next level. That level then does a few iterations and doesa single V-cycle to improve its guesses before passing them down. Once the lowest level is reached, theprocess continues as a regular V-cycle.Embedding of Pyramid into n-cubeIn observing Figure 14, it is clear that embedding the pyramid into the n-cube is not going to bepossible with Df = 1 since between each pair of levels of the pyramid, there are odd length cycles.However, Df = 2 mappings exist. The mapping makes use of the following Gray code.De�nition21. A Hierarchical Binary Reected Gray Code (HBRGC) is a BRGC such thath(Gn(i); Gn(i+ 2j)) = 2 when i + 2j � 2n � 1; j > 0De�nition22. The Hierarchical Binary Reected Gray Code HGk is a code of length k such thatHGk = 8>><>>:f0; 1g if k = 1fHGk�1(0)0;HGk�1(0)1;HGk�1(1)1;HGk�1(1)0; . . . ;HGk�1(2k�1 � 2)0;HGk�1(2k�1 � 2)1;HGk�1(2k�1 � 1)1;HGk�1(2k�1 � 1)0g k > 1If we de�ne Rl(HGk) = fHGk�1(0)10l�1;HGk�1(1)10l�1; . . . ;HGk�1(2k�1�2)10l�1;HGk�1(2k�1�1)10l�1g, which is just HGk1, then RkHGk de�nes level k+1 of a two-dimensional pyramid. Level k ofthe pyramid is created by Rk + 1(HGk � Rk(HGk)) which yields HGk0, or the subset of HGk whosenodes are at least a power of 2 distance away from the nodes of Rk(HGk). The process recurses untilthe entire pyramid is constructed. In general, at level l + 1, of the pyramid, each node at that level islabeled HGk�l(i)10l, thus reecting that each node at level l + 1 is, at most, a distance of 2 away fromchild nodes at level l + 2.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 25Example 3. HG2 generates the following pyramid depicted in Figure 17.{ HG2 = f000; 001; 011;010; 110;111;101; 100g{ R2(HG2) = f001; 011; 111;101g{ R1(HG2 � R2(HG2)) = f010; 110g{ R0(R1((HG2 �R2(HG2)))) = f100g-- --

101111011001

110010

100

-- --

Fig. 17. 2D Pyramid Generated by HBRGC HB4 Models of Embedding, Partitioning and MappingThe goal of partioning and mapping of a parallel program onto an architecture is to provide a balancednode utilization by allocating processes to processors maximizing parallelism while, simultaneously re-ducing communication overhead. These two goals are contradictory. The number of processes assignedto each node is application dependent and is dependent on the ratio between computation and commu-nication time.Optimal load balancing under perfect information is possible. In this case, you are given a set ofprocesses �0; �1; :::; �N � 1 with execution time requirements of w(�0); w(�1); � � � ; w(�N � 1) and a set ofcommunication costs: C = C(i; j) which is the length of a message sent in communicating from process�i to process �j .Classically [10], the goal of load balancing, given a process/communication digraph G(P;C), whereP is the set of processes and C is the set of directed arcs C(i; j), is to �nd a partitionG = G0 [G1 [:::[GT � 1of G and a mapping of processes to processors n(�) subject to the following constraints,Wn = Xp2Gnw(�) = constant (9)C = 12XX�6=�0C(�; �0) � dist(n(�); n(�0)) is minimized (10)

www.manaraa.com

26 ISIPCALA'93The problem with this metric is that, in modern multicomputers, such as the NCUBE/2, IntelParagon, and CM-5, the time to traverse multiple hops in the k-ary n-cube is roughly equivalent to thetime to perform nearest neighbor communication. Thus, we can simply rewrite Equation 10 asC = 12XX�6=�0C(�; �0) is minimized (11)Intuitively, however, this model is also inadequate for it does not take into account congestion fromDe�nition 12. Consider an example of the e�ects of congestion from a ring embedding of the proteinsequence comparison from Section 3.For simplicity, if we model the communication in a hypercube as circuit switching, then a hardwarecommunication circuit between two communicating nodes must be established before communicationbegins, and a link of the circuit is released at a time after the last bit of the message is transmitted.We, therefore, de�ne the communication time needed for two communicating nodes in a hypercube asfollows, tcomm = tcong + thops= tcong + [�s + �tC(�; �0)]where tcomm is the time needed to send a C-byte message from one node to another. For the circuitswitching model, if a circuit cannot be established because a desired link is being used by other packets,the circuit is said to be blocked. Here we assume that when a circuit is blocked, the partial circuitmay be torn down, with establishment to be attempted later. tcong here denotes the waiting time forreestablishment. Note that, if the mapping of the linear array in a hypercube is dilation-1, then it willbe congestion-1 also and no edges of a hypercube will be contained in more than one mapping lineararray edge. That is, if the mapping is dilation-1, tcong, the communication delay due to congestion, willbe zero. thops is the ideal communication time between two communicating nodes such that the edgecongestions of the desired circuit between these two nodes are all one. The value of thops is determinedby the three terms: �s, �t, and C, where �s is the communication latency and �t is the time needed totransmit one byte of data. In the parallel protein sequence comparison, each processor in the linear arraywill send messages to its right neighbor twice, therefore, Tcomm = 2 � tcomm = 2 � (tcong + thops).Suppose that, during the course of the computation, some processor fails. If in the beginning weselect one designated spare node and let the rest of nodes all do the computation. If a node becomesfaulty during processing, just replace this faulty node with this designated spare node. For this approach,it is very possible that the length (or hops) of the desired path from the left or right neighbor of thefaulty node to the designated spare node is equal to the dimension of the embedding hypercube, and,moreover, the desired path has congestion-2. These factors (number of hops and congestion) have tobe taken into account for calculating the communication time. From the algorithm of parallel proteinsequence comparison, we can derive that tcong is equal to �s+�tC. For simplicity, we also assume that thepath from the faulty node's left neighbor to the designated spare node and the path from the designatedspare node to the faulty node's right neighbor are edge-disjoint. The total running time for this approachis about, tcong = �s + �tCthops = �s + �tCTcomm = 2 � (tcong + thops)T� = Tcomm + w(�)which, by comparison with an embedding with no congestion, essentially, doubles the communicationtime of the entire problem.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 275 A Mathematical Model of Distributed Systems BehaviorA formal model (or mathematical model) is a model of the system using well-understood mathematicalentities such as sets and functions. Formal methods used in developing computer systems are math-ematically based techniques for describing systems. A formal method consists of a formal model andassociated mathematical techniques which provides the user with a framework for specifying and ana-lyzing the system.The problem of specifying an abstract system is that of specifying a particular mathematical object,for which good mathematical techniques may have already been developed over the years. The existenceof a formal model of an abstract system implies that a formal statement of the problem is needed thatis in terms of the the formal model being used. Separating the problem from its solution is an importantcontribution of having a theoretical foundation in that it opens the door to alternative solutions [9].There are numerous examples of the use of mathematical models in the computer science literature.One example from the study of network topology is being able to compute the information carryingcapacity of a network. This Graphs can be used as the model of network topology, while the conceptof the cut is useful for modeling the carrying capacity of the network. Other examples include queuingmodels for analyzing the performance of a system, Markov chains for reliability analysis, and axiomaticand denotational speci�cations for formally describing programming languages.In general, theoretical foundations can provide (1) criteria for evaluation, (2) means of comparison,(3) theoretical limits and capabilities (4) means of prediction, and (5) underlying rules, principles, andstructure. The power of a mathematical model is that it forces one to think clearly about the problemone is trying to solve. The process of stating the question leads one to identify relevant variables, stateexplicitly any assumption being made, and so forth. These very factors are often instrumental in leadingone to a solution. Models ignore irrelevant details. This focuses attention on the essential feature; thus,a model produces generality, for results that depend on fewer assumptions are more widely applicable.5.1 The Axiomatic Approach to Program Veri�cationThe axiomatic approach to program veri�cation is based on making assertions about program variablesbefore, during and after program execution. These assertions characterize properties of program variablesand relationships between them at various stages of program execution. Program veri�cation requiresproofs of theorems of the following type: < P > S < Q >where P and Q are assertions, and S is a statement of the language. The interpretation of the theoremis as follows: if P is true before the execution of S and if the execution of S terminates, then Q is trueafter the execution of S. P is said to be the precondition and Q the postcondition [13]. A statement, S,is partially correct with respect to the precondition P and a postcondition Q, if, whenever, P is trueof S prior to execution, and if S terminates then Q is true of S after the execution of S terminates. Aprogram, S, is totally correct if it is partially correct and it can be shown that this program terminates.CSP programs are composed of a set of communicating sequential processes. In many programs, itis desirable to save part of the communication sequence between processes. This is done with use of\dummy" or auxiliary variables that relate program variables of one process to program variables ofanother. The need for such variables has been independently recognized by many. The �rst referencethat shows the usefulness of auxiliary variables is found in [5].Overall Proof Approach . As discussed before a CSP program is made up of component sequentialprocesses executing in parallel. In general, to prove properties about the program, �rst properties ofeach component process are derived in isolation. These properties are combined to obtain the propertiesof the whole program.

www.manaraa.com

28 ISIPCALA'93Example 4. Assume that we want to prove the following:< true > [�1jj�2jj�3] < x = u >where �1 :: �2!x�2 :: �1?y; �3!y�3 :: �2The following properties can be proven about each of the component processes:< x = z > �1 < x = z >< true > �2 < y = z >< true > �3 < u = z >We can use the properties that x = z and u = z and transitivity to show that x = u.There are two approaches to proving the correctness of communicating processes. The �rst approachis to divide the correctness proof into two parts. The �rst is the sequential proofs of each individualprocess that makes assumptions about the e�ects of the communication commands. The second part isto ensure that the assumptions are \legitimate". This will be discussed later. This approach is takenin [2] and [21]. The second approach allows us to prove properties of the individual processes using theaxioms and rules of inference applicable to the statements in the individual processes. The axioms andrules of inference are designed in such a way that it is not necessary in a sequential proof of a processto make assumptions about the behavior of other processes. These properties are then used to proveproperties of the entire program. This is the approach of [35].It has been shown [22] that it is irrelevant as to which axiomatic proof systems of program veri�cationis chosen. This was done by showing that the axiomatic systems are equivalent in the sense that theyallow us to prove the same properties. No system is more powerful than the other. However, there arevery di�erent approaches to thinking about the veri�cation of the program and the applicability in apractical environment. The proof system presented in [21] is presented here for its relative ease of use.Axioms and Inference Rules Used For Sequential Reasoning . In addition to the axioms and inferencerules of predicate logic, there is one axiom or inference rule for each type of statement, as well as somestatement-independent inference rules. The following are common to all the axiomatic systems and applyto reasoning about sequential programs. The basis of the axiomatic approach to sequential programmingcan be found in [13].The skip axiom is simple, since execution of the skip statement has no e�ect on any program orauxiliary variables. < P > skip < P >The axiom states that anything about the program and logical variables that holds before executingskip also holds after it has terminated.To understand the assignment axiom, consider a multiple assignment statement, �x := �e, where �x is alist of x1; x2; :::; xn of identi�ers and �e is a list of e1; e2; :::; en of expressions. If execution of this statementdoes not terminate, then the axiom is valid for any choice of postcondition P. If execution terminates,then its only e�ect is to change the value denoted by each target xi to that of the value denoted bythe corresponding expression ei before execution was begun. Thus, to be able to conclude that P istrue when the multiple assignment terminates, execution must begin in a state in which the assertionobtained by replacing each occurrence of xi in P by ei holds. This means that if P �x�e 1 is true beforethe multiple assignment is executed and execution terminates, then P will be true after the assignment.Thus we have the following:1 This stands for predicate P with each xi replaced with ei

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 29< P �x�e > �x := �e < P >It may seem strange at �rst that the precondition should be derived from the postcondition ratherthan vice versa, but it turns out that this assignment rule, as well as being simple, is very convenient toapply in constructing proofs about programs.There are also a number of rules of inference, which enable the truth of certain assertions to bededuced from the truth of certain other assertions.A proof outline for the composition of two statements can be derived from proofs for each of itscomponents. < P > S1 < Q >;< Q > S2 < R >< P > S1;S2 < R >When executing S1;S2, if Q is true when S1 terminates it will hold when S2 starts. From the secondhypothesis, if Q is true just before S2 executes and S2 terminates, then R will hold. Thus if S1 and S2are executed one after the other and P holds before the execution, then R holds after the execution.Execution of an alternate command ensures that a statement Si is executed only if its guard bi istrue. Thus, if an assertion P is true before execution of the alternate command, then P ^ bi will holdjust before Si is executed. The second part of the hypothesis assumes that none of the guards are true.If the hypothesis is true and if the alternate statement terminates, then this is su�cient to prove thatQ will hold should the alternate statement terminate.8i :< P ^ bi > ci;Si < Q >;< P ^ 8i : :bi >!< Q >< P > if2bi; ci! Si� < Q >The consequence rule allows the precondition of a program or part of a program to be strengthenedand the postcondition to be weakened, based on deductions possible in the predicate logic.P ! P 0; < P 0 > S < Q0 >;Q0 ! Q< P > S < Q >The need for auxiliary variables was discussed earlier. Two of the proof systems use auxiliary variables.The auxiliary variables must not a�ect program control during execution. The following rule allows usto draw conclusions from proof outlines of programs annotated with auxiliary variables.< P > S0 < Q >< P > S < Q >where S is obtained from S0 by deleting all references to auxiliary variables and P and Q do notcontain any free variables which are auxiliary variables.The inference rule for the repetition command is based on a loop invariant i.e. an assertion that holdsboth before and after every iteration of a loop.8i :< P ^ bi > ci;Si < P >< P > �[2bici ! Si] < P ^ 8i : :bi >The hypotheses of the rule require that if execution of Si is begun when the assertion P and biis true, and if execution terminates, then P will again be true. Hence, if an assertion P is true justbefore the execution of a repetition command, then P is true at the beginning and end of each iteration.Thus, P will hold if the repetition terminates. The repetition ends when no boolean guard is true, so:b1 ^ :b2 ^ :::^ :bn will also hold at that time.[21] does not have distributed termination which is contrary to Hoare's original version of CSP [14].Distributed termination provides the means for automatic termination of a loop in one process becauseanother process has terminated. It is assumed that termination of all loops occurs when all booleanguards are false.

www.manaraa.com

30 ISIPCALA'93Example 5. Let us examine how these rules are applied to the following sample program.var t,i,b[0...n-1]:integer;t := 0;i := 0;do [i 6= n! t:=t+b[i]; i := i + 1] odThis program sums up the elements of an array b. The result is put into the variable t. Now to provethe partial correctness of this program, we will prove that if the program is started in a state wheren � 0 holds and execution terminates, then t will contain the sum of the values in b[0] through b[n-1].The composition rule implies that in order to prove the above program correct, it is su�cient to provethat < n � 0 > t := 0 < t = 0 > (12)< t = 0 > i := 0 < t = 0 ^ i = 0 > (13)< t = 0 ^ i = 0 > do[i 6= n! t := t+ b[i]; i := i+ 1]od < t = i�1Xj=0 b[j] > (14)Outline 12 and 13 are easy to prove using the assignment axiom. Note that using normal predicatelogic inference rules, it can be shown t = 0 ^ i = 0! t =Pi�1j=0 b[j]. Remember that since i is equal to0, that there are no values of j between 0 and i� 1. Hence, t =Pi�1j=0 b[j] is vacuously true. Therefore,by applying the Rule of Consequence, we can prove Outline 14 by showing the following:< t = i�1Xj=0 b[j] > do[i 6= n! t := t+ b[i]; i := i+ 1]od < t = i�1Xj=0 b[j] > (15)To prove Outline 15, it will be su�cient to prove that< t = i�1Xj=0 b[j] ^ i 6= n > t := t + b[i]; i := i+ 1 < t = i�1Xj=0 b[j] > (16)< t = i�1Xj=0 b[j] ^ i = n >!< t = n�1Xj=0 b[j] > (17)In order to prove 16, it is su�cient to prove< t = i�1Xj=0 b[j] ^ i 6= n > t := t+ b[i];< t = iXj=0 b[j] > (18)< t = iXj=0 b[j] > i := i+ 1 < t = i�1Xj=0 b[j] > (19)Outlines 18, 19 can each be proven by applying the assignment axiom. Outline 17 can be shown bysubstituting i for n and using the consequence rule.Axioms and Inference Rules Dealing With Communication . Each of the three proof systems deal withassertions on communications in di�erent manners. Two of the approaches make the explicit use of aux-iliary variables to relate the di�erent communication sequences. The third proof system makes assertionson communication sequences.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 31Communication and Parallel Decomposition rules . The communication axiom is as follows:< P > � < Q >where � is a communication command.Remember that < P > S < Q > means total correctness if S terminates. S terminates in theabsence of deadlock. The parallel rule implies that a proof for a parallel program is based on the isolatedsequential proofs of the processes it comprises. Take any such program S. A sequential proof for it onlyproves facts about it running in isolation. With only one process running, communication commandsdeadlock. Thus, any predicate Q may be assumed to be true upon termination of a communicationcommand because termination never occurs.The Law of the Excluded Miracle [7] states that the statement false should never be derived. This isthe requirement to ensure a sound logic. The communication axiom does violate the Law of the ExcludedMiracle. This allows us to deduce that the following is true:< true > A?x < x = 5 ^ x = 6 >The postcondition, however, is obviously false. Thus, one might come to the conclusion that the proofsystem is not sound. This is the result of allowing the communication axiom to make assumptions aboutthe behavior of other processes in order to prove properties of an individual process. In order to justifythose assumptions a \satisfaction proof" must be done. This ensures that the proof system is sound.Hence, the parallel inference rule is as follows:(8i :< Pi > Si < Qi >)satis�ed and interference � free< (8i : Pi) > [jji=1:n; �i :: Si] < (8i : Qi) >The parallel rule implies that we can construct the proof of a parallel program from the partialcorrectness properties of the sequential programs it comprises.It has been mentioned that a \satisfaction proof" is needed to ensure soundness of the proof system.Let us examine the proof outline of the matching communication pair:�1 : [::: < P > �2?x < Q >]�2 : [::: < R > �1!y < S >]The e�ect of these two communication commands is to assign y to x. This implies that Q^S is trueafter communication if and only if (P ^R)! (Q ^ S)xyA \satisfaction proof" is such that the above is proven for every matching communication pair. Thisis called the rule of satisfaction.Earlier we discussed the need for auxiliary variables. An auxiliary variable may a�ect neither theow of control nor the value of any non-auxiliary variables. Otherwise, this unrestricted use of auxiliaryvariables would destroy the soundness of the proof system. Hence, auxiliary variables are not necessaryto the computation, but they are necessary for veri�cation. The proof system in [21] allows for auxiliaryvariables to be global i.e. variables that can be shared between distinct processes. Global auxiliary vari-ables (GAVs) are used to record part of the history of the communication sequence. Shared reference toauxiliary variables allow for assertions relating the di�erent communication sequences. This necessitatesthe need for a Proof of Non-interference. This consists of showing that for each assertion T in process �i,it must be shown that T is invariant over any parallel execution. This is the non-interference propertyof [30].

www.manaraa.com

32 ISIPCALA'93Asynchronous Message Passing Systems The proof systems that have been discussed up to this pointare designed for synchronous programming primitives. Our work uses an extension of work discussed in[33]. The work of [33] describes how to extend the notion of a \satisfaction proof" and \non-interferenceproof" for asynchronous message-passing primitives. The extension is based on introducing for each pairof processors �i and �j , two auxiliary variables �ij, ij , where �ij is the set of all messages sent fromprocess i to process j and ij is the set of all messages j actually receives from i. This extension involvesassuming that actual sending and receipt of a message implies that �ij and ij are immediately updated.It is also assumed that ij � �ij is invariantly true throughout program execution.6 Operational EvaluationIt is important for both life-critical, and non-life-critical distributed systems to meet their speci�cationat run time [20]. Large, complex, distributed systems, are subject to individual component failureswhich can cause system failure. Fault tolerance is an important technique to improve system reliability.The fault detection aspect identi�es individual faulty components (processors) before they can a�ect,negatively, overall system reliability.A failure occurs when the user observes that a resource does not perform as expected. The failureis the result of some part of the resource entering a state which is contrary to the speci�cation of thepart. The cause of the resource entering such a state is referred to as a fault. When a system can recoverfrom a fault without exhibiting a failure, then the system has fault tolerance. Reliability is a measure ofthe probability that a speci�c resource will perform a required function for a speci�ed period of time,usually the item's life time, even in the presence of faults. The higher the probability the higher thereliability of the system is considered to be.Many methodologies for improving system reliability have been developed throughout the years.These di�erent methodologies fall into two basic groups: fault masking techniques and concurrent tech-niques. Early attempts at improving system reliability used fault-masking methods; these methods makethe hardware tolerant of faults through the multiplicity of processing resources. In contrast, concurrentfault detection methods attempt to locate component errors which can lead to system failure. Once thefaults are identi�ed, recon�guration and recovery [37] are used to deal with the fault. This paper focuseson detecting the occurrence of errors. Recovery and recon�guration are di�erent issues. Work in concur-rent detection methods includes self-checking software [38] and recovery blocks [31], which instrument thesoftware with assertions on the program's state, watchdog processor [28], which monitors intermediatedata of a computation, and algorithm-based fault tolerance [16] which imposes an additional structureon the data to detect errors. These methods de�ne structure for fault tolerance, but do not, generally,give a methodology for instantiating the structure.Application-oriented fault tolerance [29], by contrast, provides a heuristic approach, based on the\Natural Constraints," to choosing executable assertions from the software speci�cation. These exe-cutable assertions [38], in the form of source language statements, are inserted into a program formonitoring the run-time execution behavior of the program. The general form is as follows:if :ASSERTION thenERRORExecutable assertions are used to ensure that the program state, in the actual run-time environment,is consistent with the logical state speci�ed in the assertion; if not, then an error has occurred and areliable communication of this diagnostic information is provided to the system such that recon�gurationand recovery can take place. The heuristics for selection of the actual executable assertions are based onthree metrics of progress, feasibility, and consistency.What our earlier work lacks is a theoretical foundation built upon mathematical models and theories.In general, theoretical foundations can provide (1) criteria for evaluation, (2) means of comparison, (3)theoretical limits and capabilities, (4) means of prediction, and (5) underlying rules, principles, and struc-ture. This paper describes Changeling as a formal method using the mathematical model of axiomatic

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 33program veri�cation to construct executable assertions for error checking in distributed systems. Appli-cation of the Changeling system is a two step process. First, from a veri�cation proof outline, Changelingconverts a shared memory proof outline into a distributed memory proof outline, which closely matchesthe distributed operational environment. Second, Changeling transforms the assertions from the proofoutline into executable assertions.6.1 Changeling and Application-oriented Fault ToleranceApplication-oriented fault tolerance works on the principle of testing at run time the intermediate log-ical assertions from the veri�cation proof outline i.e. application-oriented fault tolerance works on thefollowing principle:If we test and ensure intermediate results of a program's computation meet its speci�cation,the end solution meets its speci�cation if the intermediate results meet their speci�cation. Ifprocessor errors occur that do not a�ect the solution, then they are not errors of interest. Programveri�cation provides these tests.The above principle yields a formal statement of application-oriented fault tolerance; we generate theexecutable assertions from the logical assertions used in the veri�cation proof outline of < P > S < Q >.The executable assertion generated corresponding to any logical assertion Qi from the veri�cation proofoutline is the following: if : Qi then ERRORFormally, this ensures that if P is true before the concurrent program S begins execution, S tests at runtime that S satis�es the speci�cation as de�ned by P and Q, by using the embedded executable assertionsgenerated from the assertions of the veri�cation proof. Conversely, the assertions of the veri�cationproof represent the properties that must be satis�ed by the run-time environment; an error that causesthe execution of the program not to satisfy the speci�ed assertions will be agged as an error by theexecutable assertions.The reader may be suspicious that some program S may be changed into a program S0 by an errorthat satis�es the speci�cation as de�ned by P and Q. Consider, as an example, a program S computingsome value x with postassertion < Q > � < x � 0 >. Suppose that S should compute x = 3. Aprogram S0 may actually compute x = 4. The postcondition is still satis�ed, although, the value is notwhat was intended. This is not a problem with the validity of the postassertion, it is a weakness of thespeci�cation. If x = 3 was what was really intended, then the proper postassertion should have been< Q > � < x = 3 >. If < Q > � < x � 0 > is a su�cient speci�cation for the application at hand,then there is no problem.To eliminate confusion between the testing of intermediate results (via logical assertions) for cor-rectness with respect to the algorithm and the evaluation of the executable assertions derived from theveri�cation proof in the run-time environment, we will refer to the former as the veri�cation environmentand the latter as the (distributed) operational environment.To summarize, the transformation of an algorithm to an error-detecting algorithm involves using theassertions of the veri�cation proof as executable assertions that are to be embedded into the algorithm.Taking an application from the veri�cation environment to the distributed operational environmentis not a straightforward task. It is this di�culty that inspired the development of Changeling. Changelingconsists of four distinct components:1. The GAA Proof System described in Section 52. An HAA proof system which mimics closely the distributed operational environment3. Formal conversion from GAA to HAA4. Formal translation of assertions in the HAA proof system to executable assertions and reducing stateinformation to improve run-time e�ciencyThese components are described in the following paragraphs.

www.manaraa.com

34 ISIPCALA'93History of Auxiliary Variable (HAA) Veri�cation System The logical assertions from the GAAveri�cation environment cannot be directly used as executable assertions in the distributed environment;in the distributed environment, there are no global variables. Thus, to evaluate, at run time, logicalassertions containing global auxiliary variables, an explicit updating mechanismmust be created. Here wedevelop the veri�cation proof system (HAA) in which updates of global auxiliary variables are exchangedat communication time. This matches, more closely, the operational environment. We show that everyveri�cation proof outline in the GAA proof system has the same properties in the HAA proof system,i.e., satisfaction and non-interference; thus, implying that the HAA proof system has the soundness andcompleteness properties of the original GAA proof system. The existence of the HAA proof system allowsfor proofs that can be directly transformed to executable assertions in the run-time environment.Developing the HAA system requires us to keep track of which processes communicate with whichother processes. Each process needs to record its global auxiliary variable updates with respect to allother processes. When communication occurs between two processes, they need to exchange the updatesand locally apply them (the updates). This is formalized in the following de�nitions.De�nition23. For a process �i, hi denotes the sequence of all communications that process �i has sofar participated in as the receiving process. Thus, hi is a list consisting of tuples (these are di�erent fromthe [35] tuples; all future reference to tuples will refer to the following tuples) representing matchingcommunication pairs of the form [�; (V ar; V al); T; C]where � is a process from which �i receives from, Var is the variable that � is transmitting to �i withformal parameter Val. T denotes the time at which the value Val was assigned to variable Var and Cdenotes the communication path.Since we have several processes running in parallel and there exists no concept of a global time, thetime T is a local time represented by an instantiation counter that is incremented by one after everyexecution of a statement. This permits an ordering (time-stamping) for all updates of the GAVs withineach process.To be able to account for the di�erent operations performed on the auxiliary variables, each processhas to keep a history of variable updates with respect to the last communicationwith the other processes.These variable sets are described using the subscript of the corresponding process.De�nition24. Let gij depict the GAV set in process �i with respect to process �j , i.e., gij contains thechanges that were made to the GAVs in �i since the last communication with �j . Gi is the set of setsgi0; gi1, ..., gi(N�1) in process �i. Thus, when two processes �i and �j communicate, the values of theirrespective subsets, gij 2 Gi and gji 2 Gj, are exchanged.When two processes �i and �j communicate, where �j is the sender, �j will augment the communica-tion by sending the values of global auxiliary variables that �j updated, or received updates of, betweenthe last and current communications between �i and �j . We batch the changes made to the local copiesof the global auxiliary variables by �j since the last communication (with any other processor) in gjj.Before a communication, the function applies changes to all gjk's and gjj is reset to null to collect fu-ture changes. De�nition 26 formally describes the communication of gji. De�nition 27 formally describeshow process �i updates Gi based on the communicated gji after communication has taken place.De�nition25. The actual set of GAVs to be sent during a communication between �i and �j , where�j is the sender, is determined based on the variables in gjj, i.e., all the variables that were updatedin �j since the last communication with any process. The set gjj is updated every time an assignmentto a GAV takes place in �j and reset at communication time to the empty set. The following function (Gj ; gjj) describes the update of all variable histories before a communication.�j : (8k; 0 � k � N � 1)(8gjk 2 Gj)[if k 6= j then gjk gjk [gjj else if k = j then gjj ;]

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 35The following de�nition formally de�nes the semantics of global auxiliary variable communication.De�nition26. The primary communication is a matching communication pair for the exchange ofvariables between processes which are not GAVs. It can be described by a tuple [�j; (V ar; V al); t; j]where t = Tj is the current value of the local time. It is easy to see that all communications in theGAA system are primary since GAVs are updated globally. An augmented communication permits theexchange of the GAVs after a primary communication occurs. In an augmented communication, thevalues of gji are marshalled into a message sent to process �i.For each process �i after an augmented exchange with �j , �i updates its set of GAVs in Gi with the newvalues received. This interchange is described in Figure 18 for two processes �i, �j and one matchingcommunication pair within the execution sequence of the two processes.For process Pi:/* execute arbitrary set of statements excluding communication butincluding assignments to auxiliary variables */Si1; < Ti := 1 >Si2; < Ti := Ti + 1 >:::;Sik ; < Ti := Ti + j >/* update the auxiliary variables */Gi (Gi; gii); < Ti := Ti + 1 >/* perform communication with process Pj;the �rst communication represents the actual communication *//* the next two communications represent the exchange augment of the auxiliary variables */Pj ? V ; < Ti := k >Pj ? gji ; < Ti := k + 1 >Pj ! gij ; < Ti := k + 2 >/* update the auxiliary variables */Gi �(Gi; gji); < Ti := k + 3 >For process Pj:/* execute arbitrary set of statements excluding communicationbut including assignments to auxiliary variables */Sj1; < Tj := 1 >Sj2; < Tj := Tj + 1 >:::;Sjk ; < Tj := Tj + 1 >/* update the auxiliary variables */Gj (Gj ; gjj); < Tj := Tj + 1 >/* perform communication with process Pi;the �rst communication represents the actual communication *//* the next two communications represent the exchange augment of the auxiliary variables */Pi ! V ; < Tj := k >Pi ! gji ; < Tj := k + 1 >Pi ? gij ; < Tj := k + 2 >/* update the auxiliary variables */Gj �(Gj ; gij); < Tj := k+ 3 >Fig. 18. An HAA proof outline for one matching communication pair.

www.manaraa.com

36 ISIPCALA'93De�nition27. The updates performed in the di�erent processes are described by a function �(Gi; gji)on the set of the GAV history and the variables to be updated. The actual update function � is nowde�ned on all the subsets within Gi on tuples of the form [�j; (gji; gvarj); T; j].�i : (8k; 0 � k � N � 1)(8gik 2 Gi)[if k 6= j then gik gik [gvarjelse if k = j then apply(gvarj); gij ;]When processes �i and �j communicate, all old values in the set gij will be replaced by the new variables.Additionally, these new values (from gvarj) are unmarshalled and applied to update the local values ofprocess �i. In this way, communication propagates GAV updates throughout the concurrent program.It can be seen that the so-called \global auxiliary variables" in the HAA system are not really globalin the sense that all processes have the same values of the variables at all times. Indeed, it is likely thatat the end of the process execution some processes that ran in parallel will have di�erent values withintheir set of GAVs. We show that because of non-interference, this is not a problem with respect to theproof system.Within a process execution, two communicating processes can have arbitrary interleavings of theirstatements up to the communication, but are conceptually synchronized at the communication point.The assertions will not interfere with each other due to the non-interference property of the GAA systemwhich provides for arbitrary execution orders. Since two (or more) processes will only change (write onto)the same global auxiliary variable if they have to communicate with each other, they will also exchangeother variables/data in that process and the values of the auxiliary variables will be available for theother process at the critical point: right after a communication takes place. Thus, sending only thehistory of the global variable updates instead of immediately providing the other process(es) with thelatest information will not cause any problems, since the values of the variables will be available at thecommunication points, where they are in fact provided.An example of three possible process execution sequences that are subject to non-interference isshown in Figure 19. For any two processes, non-interference will guarantee that the execution order ofthe two processes or any arbitrary interleaving of them will not invalidate the assertions made on therespective process statements.Non-interference and the rule of satisfaction can be used to show that the soundness and completenessproperties of the original GAA system will hold in the new HAA proof system.Theorem28. [26] The history of auxiliary variables approach (HAA) retains the properties of the globalauxiliary variables approach (GAA).Reliable Communication of State Information The HAA proof system provides for direct trans-formation of assertions from the veri�cation environment into executable assertions for the non-faultydistributed operational environment. However, we are concerned with the distributed faulty environ-ment. Thus, it is necessary to ensure that faulty processors cannot fool executable assertions by incorrectaugmented communication of g0s through sending inconsistent messages to di�erent processors. It is nec-essary for this to be detected. This is the purpose of consistency executable assertions. Mathematically,this can be described as follows:De�nition29. For a non-faulty process �i, if there exist any two tuples t1; t2 2 hi such thatt1 = [j; (V ar; V al1); T; C1]t2 = [j; (V ar; V al2); T; C2]then if V al1 � V al2 the system is said to be inconsistent otherwise the system is said to be consistent.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 37Process0 Process1 Process1Process0 Process0 Process1fP0gS0fQ0g
fQ1gS1fP1g fP0gS0fQ0g

fP1gS1fQ1g fQ1gS1fP1gfQ0gS0fP0g
Fig. 19. Some possible process execution sequences before communication takes place.� is de�ned as a set of functions such that each �0 2 � is of functionality dt ! T; F where dt is anabstract data type. Examples of �0 are 6=, �, :prefix, or some other operator appropriate to the choiceof the data type of V ar. Where no ambiguity results, we will refer to a particular �0 simply as �.The strongest motivation for the consistency condition is to supplement the power of the executableassertions derived from the HAA system. When the value of a variable computed in time T is com-municated to a set of processors on more than one path, there will be two or more tuples in hi thatsatisfy the precondition. Under a bounded number of faults, the consistency de�nition of 29 ensuresthat a non-faulty processor receives a consistent set of input values for its executable assertions, other-wise, V al1 � V al2, and an inconsistent system can be detected. The degree of fault tolerance is basedon standard network ow arguments and is not repeated here. It should be noted that all faults incommunication links are mapped to a processor, thus it is enough to assume only faulty processors.Consistency does not have to be explicit. In other words, an error-detecting program may have toexplicitly add code to implement consistency. This can be done in many ways. There are classes ofproblems that have the property of natural redundancy in the problem variables. This implies that thereare types of errors, which if they occur at stage i, eventually, at some stage j (where j > i), we have thatstage j satis�es the properties as de�ned by the intermediate assertions of a veri�cation proof, despitethe fact that the error had occurred in stage i. If a program variable is naturally redundant then thismeans that this program variable can be constructed from other variables.

www.manaraa.com

38 ISIPCALA'93Run-Time E�ciency Considerations The transformation from the HAA veri�cation environmentto the operational environment described above is optimal in the sense that all violations of the program'sspeci�cation (in terms of the postconditions on each statement and within the limits of consistency) arecaught under a bounded number of faults. However, when run-time e�ciency is considered, not allof these assertions, nor all of the communicated GAVs are necessary. These two aspects of reducingcomplexity are treated as follows:{ Assertions involving local variables to a particular process which are necessary in the veri�cationenvironment are useless in the distributed operational environment. Since the unit of failure andrecon�guration is at the processor level, a processor cannot be trusted to diagnose itself as faulty orfault-free. Thus, assertions using only local variables incur a run-time overhead that is not necessaryand all such assertions can be deleted.{ The fault coverage of certain assertions using the GAVs may be subsumed. Thus, many of theremaining assertions may be removed as well. Likewise, removing some of the assertions may resultin certain GAVs no longer being required. Furthermore, certain assertions may be too expensive toevaluate in the operational environment and may be deleted for that reason.We applied this transformation to several concurrent applications including concurrent databasetransactions schedules [24], bitonic sorting [25], and concurrent branch and bound [27] and obtainedperformance and error coverage data on each.7 SummaryThis paper has covered a broad expanse of topics in an e�ort to provide both an informal basis forconstructing parallel applications and a formal basis for reasoning about these parallel applications andhow they are mapped onto a popular existing architecture.References1. G.M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.AFIPS Conference Proceedings, 30:483{485, 1967.2. R. Apt and W. Roever. A proof system for communicating sequential processes. ACM Transactions onProgramming Languages and Systems, 2(3):359{385, 1981.3. J. Backus. Can programming be liberated from the von Neumann style? a functional style and its algebraof programs. Communications of the ACM, 21(8):613{641, 1979.4. W. Briggs. Multigrid Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania,1987.5. M. Clint. Program proving: coroutines,. Acta Informatica, 2:50{63, 1973.6. G. Cybenko, D. W. Krumme, and K. N. Venkataraman. Fixed hypercube embedding. Information Process-ing Letters, 25:35{39, 1987.7. E. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.8. E. Edmiston and R. A. Wagner. Parallelization of the dynamic programming algorithm for comparison ofsequences. In Proceedings of Int'l Conf. on Parallel Processing, pages 78{80, 1987.9. M. Fischer. A theoretician's view of fault tolerant distributed computing. Fault-Tolerant Distributed Com-puting, Lecture Notes in Computer Science 448, pages 1{9, 1990.10. G. C. Fox and W. Furmaski. Load balancing loosely synchronous problems with a neural network. Technicalreport, California Institute of Technology, Pasedena, CA, February 1988.11. W. M. Gentleman. Some complexity results for matrix computations on parallel computers. Journal of theACM, 25(1):112{115, January 1978.12. J. Gustafson. Reevaluating Amdahl's law. Communications of the ACM, 31(5):532{533, 1988.13. C. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576{583,1969.

www.manaraa.com

B. McMillin et al: Parallel Algorithm Fundamentals and Analysis 3914. C. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666{677, 1978.15. J. Hong. Computation, Computability, Similarity and Duality. Pittman, London, 1986.16. K Huang and J. Abraham. Fault-tolerant algorithms and their applications to solving Laplace equations.Proceedings of the 1984 International Conference on Parallel Processing, pages 117{122, August, 1984.17. K. Hwang and Briggs F. Computer Architecture and Parallel Processing. McGraw-Hill, New York, 1984.18. IBM. IBM Scalable PowerParallel System 9076-SP1, 1993.19. E. Lander and J. P. Mesirov. Protein sequence comparison on a data parallel computer. In Proceeding ofthe International Conf. on Parallel Processing, pages 257{263, 1988.20. J Laprie and B. Littlewood. Probabilistic assessment of safety-critical software: Why and how? Communi-cations of the ACM, 35(2):13{21, 1992.21. G.M. Levin and D. Gries. A proof technique for communicating sequential processes. Acta Informatica,15:281{302, 1981.22. H. Lut�yya and B. McMillin. Comparison of three axiomatic proof systems. UMR Department of ComputerScience Technical Report CSC91-13, 1991.23. H. Lut�yya, B. McMillin, P. Poshyanonda, and C. Dagli. Composite stock cutting through simulated an-nealing. Journal of Mathematical and Computer Modeling, 16(1):57{74, 1992.24. H. Lut�yya, B. McMillin, and Alan Su. Formal derivation of an error-detecting distributed data schedulerusing CHANGELING. In Formal Methods in Programming, Novosibirisk, Russia, July 1993. Also as UMRDepartment of Computer Science Technical Report Number CSC 92-14.25. H. Lut�yya, M. Schollmeyer, and B. McMillin. Fault-tolerant distributed sort generated from a veri�cationproof outline. In H. Kopetz and Y. Kakuda, editors, Responsive Computer Systems - Dependable Computingand Fault-Tolerance, volume 7. Springer-Verlag, 1992. Also as a Short Talk in the 14th ICSE, Melbourne,Australia and UMR Department of Computer Science Technical Report C.Sc. 91-12.26. H. Lut�yya, M. Schollmeyer, and B. McMillin. Formal generation of executable assertions for application-oriented fault tolerance. UMR Department of Computer Science Technical Report Number CSC 92-15, 1992.27. H. Lut�yya, A. Sun, and B. McMillin. A fault tolerant branch and bound algorithm derived from programveri�cation. IEEE Computers Software and Applications Conference(COMPSAC), pages 182{187, 1992.28. A. Mahmood, E. McCluskey, and D. Lu. Concurrent fault detection using a watchdog processor and asser-tions. IEEE 1983 International Test Conference, pages 622{628, 1983.29. B. McMillin and L. Ni. Reliable distributed sorting through the application-oriented fault toleranceparadigm. IEEE Trans. of Parallel and Distributed Computing, 3(4):411{420, 1992.30. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Informatica, 6:319{340,1976.31. B. Randall. System structure for software fault tolerance. IEEE Transactions of Software Engineering,SE-1(2):220{232, 1975.32. D. Riggins, B. McMillin, M. Underwood, L. Reeves, and E. Lu. Modeling of supersonic combustor owsusing parallel computing. Computer Systems in Engineering, 3:217{219, 1992.33. R. Schlichting and F. Schneider. Using message passing for distributed programming: Proof rules and disci-plines. ACM Transactions on Programming Languages and Systems, 6(3):402{431, July 1984.34. H.J. Siegel et al. PASM: A partionable SIMD/MIMD system for image processing and pattern recognition.IEEE Transactions on Computers, C-30:934{947, December 1981.35. N. Soundararahan. Axiomatic semantics of communicating sequential processes. ACM Transactions onProgramming Languages and Systems, 6(6):647{662, 1984.36. Q. F. Stout. Hypercubes and pyramids. In V. Cantoni and S. Levialdi, editors, Pyramidal Systems forComputer Vision. Springer-Verlag, New York, 1986.37. R. Yanney and J. Hayes. Distributed recovery in fault tolerance multiprocessor networks. 4th InternationalConference on Distributed Computing Systems, pages 514{525, 1984.38. S. Yau and R. Cheung. Design of self-checking software. Proc. Int'l Conf. on Reliability Software, pages450{457, April 1975.

